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In second year of my bachelor’s degree in Mathematical Physics, covari-
ance and contravariance of mathematical objects was introduced (in Theo-
retical Physics). Beside other, we derived how grad U (let U be a scalar
field) transforms. But it was not clear to me until now what it means in full
context of 1-forms and analysis.

I will try to give some mathematical background but mostly just to famil-
iarize ourselves with the notation that I will be using and not everything will
be commented in detail. For more complete overview of tensors, differential
1-forms and other topics, please use literature if you are not familiar with
these concepts. But in my opinion, if you are not familiar with these you
will not be very interested in this post. But who knows :-).

See for ex. this document about more abstract treatment of tensors (as
multilinear maps).

1 Introduction

Let V n be a vector space of dimension n and let B = (e1, e2, . . . , en) denote
a basis of V n and let Vn = (V n)∗, B∗ = (e1, . . . , en) denote its dual vector
space and its basis respectively.

Also, we will be using upper indices to denote vectors v = viei (sometimes
also denoted −→v ) that transform contravariantly (opposite to) B and lower
indices to denote (co)vectors α = αie

i (sometimes also denoted α←−) that

transform covariantly (same as) B. And of course, basis B will transform
with ẽj = Si

jei into B̃ = (ẽ1, ẽ2, . . . , ẽn) , S ∈ GL(n,R).
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More abstractly, a covector can be thought of as a map from vector space
to reals α : V n → R while a vector is a map which takes a covector and
returns a real number, v : Vn → R. See the linked document above for more
information.

1.1 1-forms

A basic observation of mathematical analysis is that a total derivative of
some function f : M → N (M,N affine spaces) calculated in point x0 ∈ M
is a linear map from ~M to ~N , f ′(x0) ∈ Hom( ~M, ~N).

A differential 1-form is such an object

ω = ωi dxi←−, ωi : M → N, dxi←− ∈ B
∗, ω ∈ Λ1

where B∗ is a basis of ~M∗ and pointwise

α(x0)←−−−
= ωi(x0)dx

i

←−

More symbols later, for f : Rn → R we define

(df)(x0) = f ′(x0) ∈ (V n)∗

and also call ω an exact differential if there exists a function f such that
df = ω. Thus, df is trivially an exact differential.

2 The problem

When we introduced basic terms, we can begin to work towards the initially
confusing part.

Let M be an affine space, ~Mn = V n be its focus, g an arbitrary nonde-
generate bilinear form on V n and let U = U(x), x ∈M denote a scalar field
on M . Then

(dU)(x) ∈ (V n)∗ ∀x ∈M

and vector
(gradU)(x) ∈ V n ∀x ∈M
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is defined such that dU(x)v = g(v, (grad U)(x)), v ∈ V n or more cleanly

dU = g( · , grad U).

In other words, g induces a natural (canonical) izomorphism between V n and
its dual Vn (generalized version of Riesz’s theorem for scalar product).

Note that dU = (dU)ie
i. Also we can call the bilinear form g a pseudo-

metric tensor (a second order tensor) and define gij = g(ei, ej) . Through
linearity, we can write

dUi = g( · , grad U)i = gij(gradU)j = gijgradU j,

where (dU)i and gradU j are components of dU and gradU with respect to
bases B∗ and B respectively. Continuing, we can write (as dU is an exact
differential)

dU =
∂f

∂xi
dxi,

where ∂
∂xi is called a covariant derivative. When we would think of an object

(a total derivative f ′) whose i-th component is ∂f
∂xi , the object transforms

covariantly with basis transformation (just expand xi into gijxj).
Also, when we talk about lowering/raising and index, we mean trans-

formation of a vector vi to a covector vi defined using g as vi = gijv
j and

similarly the other way around.

gijgradU j = dUi =
∂f

∂xi
(1)

And after multiplying both sides with gki we have

gradUk = gki
∂f

∂xi
.

But we have one last quest at that is to assign better meaning to this
expression. This is going to be obtained using

∂

∂xi
=

∂

∂(gikxk)
=

1

gik
∂

∂xk
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and consequently multiplying both sides by gik resulting together with (1) in

gradUk =
∂U

∂xk
.

This object gradU then transforms as is expected from proper vector; that
is – contravariantly. On the other hand, its corresponding 1-form dU fullfills

(dU)i =
∂U

∂xi
.

3 Conclusion

The issue I previously faced was using a bad definition of what exactly gradi-
ent means in more general spaces than Euclidian spaces with standard scalar
product 〈·, ·〉 : V n × V n → R with positive signature. In this space both gij
and gij (its inverse) are equal to diag(+1,+1, . . . ,+1), hence no difference
between covariant and contravariant vectors can be observed. Together with
other mistakes, this lead me to wrong conclusion that gradient is not prop-
erly defined in more general spaces, which was really strange so I tried once
more.

The existence and a particular bilinear nondegenerate form choosen for
some space depends on context. Eg. for Euclidian E(3), (gij) = diag(+1,+1,+1),
for Minkowski space E(1, 3) used in special relativity, metric pseuoudoten-
sor (gij) = diag(+1,−1,−1,−1) is chosen (so that it conserves spacetime
interval). And for example on phase space Γ (differentiable manifold) in
Hamiltonian formalism, one chooses symplectic (antisymmetric) form ω de-
fined on cotangent bundle T ∗M , where M is the system’s configuration space,
as ω = dpi∧dqi in coordinates and ω =

(
0 I
−I 0

)
in matrix notation. All matrix

relations are in polar/symplectic basis.
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